YES 10.054 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ IFR

mainModule Main
  ((gcd :: Int  ->  Int  ->  Int) :: Int  ->  Int  ->  Int)

module Main where
  import qualified Prelude



If Reductions:
The following If expression
if primGEqNatS x y then primModNatS (primMinusNatS x y) (Succ y) else Succ x

is transformed to
primModNatS0 x y True = primModNatS (primMinusNatS x y) (Succ y)
primModNatS0 x y False = Succ x



↳ HASKELL
  ↳ IFR
HASKELL
      ↳ BR

mainModule Main
  ((gcd :: Int  ->  Int  ->  Int) :: Int  ->  Int  ->  Int)

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule Main
  ((gcd :: Int  ->  Int  ->  Int) :: Int  ->  Int  ->  Int)

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
gcd' x 0 = x
gcd' x y = gcd' y (x `rem` y)

is transformed to
gcd' x xx = gcd'2 x xx
gcd' x y = gcd'0 x y

gcd'0 x y = gcd' y (x `rem` y)

gcd'1 True x xx = x
gcd'1 xy xz yu = gcd'0 xz yu

gcd'2 x xx = gcd'1 (xx == 0) x xx
gcd'2 yv yw = gcd'0 yv yw

The following Function with conditions
gcd 0 0 = error []
gcd x y = 
gcd' (abs x) (abs y)
where 
gcd' x 0 = x
gcd' x y = gcd' y (x `rem` y)

is transformed to
gcd yx yy = gcd3 yx yy
gcd x y = gcd0 x y

gcd0 x y = 
gcd' (abs x) (abs y)
where 
gcd' x xx = gcd'2 x xx
gcd' x y = gcd'0 x y
gcd'0 x y = gcd' y (x `rem` y)
gcd'1 True x xx = x
gcd'1 xy xz yu = gcd'0 xz yu
gcd'2 x xx = gcd'1 (xx == 0) x xx
gcd'2 yv yw = gcd'0 yv yw

gcd1 True yx yy = error []
gcd1 yz zu zv = gcd0 zu zv

gcd2 True yx yy = gcd1 (yy == 0) yx yy
gcd2 zw zx zy = gcd0 zx zy

gcd3 yx yy = gcd2 (yx == 0) yx yy
gcd3 zz vuu = gcd0 zz vuu

The following Function with conditions
absReal x
 | x >= 0
 = x
 | otherwise
 = `negate` x

is transformed to
absReal x = absReal2 x

absReal0 x True = `negate` x

absReal1 x True = x
absReal1 x False = absReal0 x otherwise

absReal2 x = absReal1 x (x >= 0)

The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ LetRed

mainModule Main
  ((gcd :: Int  ->  Int  ->  Int) :: Int  ->  Int  ->  Int)

module Main where
  import qualified Prelude



Let/Where Reductions:
The bindings of the following Let/Where expression
gcd' (abs x) (abs y)
where 
gcd' x xx = gcd'2 x xx
gcd' x y = gcd'0 x y
gcd'0 x y = gcd' y (x `rem` y)
gcd'1 True x xx = x
gcd'1 xy xz yu = gcd'0 xz yu
gcd'2 x xx = gcd'1 (xx == 0) x xx
gcd'2 yv yw = gcd'0 yv yw

are unpacked to the following functions on top level
gcd0Gcd' x xx = gcd0Gcd'2 x xx
gcd0Gcd' x y = gcd0Gcd'0 x y

gcd0Gcd'1 True x xx = x
gcd0Gcd'1 xy xz yu = gcd0Gcd'0 xz yu

gcd0Gcd'2 x xx = gcd0Gcd'1 (xx == 0) x xx
gcd0Gcd'2 yv yw = gcd0Gcd'0 yv yw

gcd0Gcd'0 x y = gcd0Gcd' y (x `rem` y)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
HASKELL
                  ↳ NumRed

mainModule Main
  ((gcd :: Int  ->  Int  ->  Int) :: Int  ->  Int  ->  Int)

module Main where
  import qualified Prelude



Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
HASKELL
                      ↳ Narrow

mainModule Main
  (gcd :: Int  ->  Int  ->  Int)

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
QDP
                            ↳ QDPSizeChangeProof
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNatS(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS(vuv230, vuv2400)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Zero) → new_gcd0Gcd'11(vuv6000, Zero)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'1(Succ(Zero), Zero) → new_gcd0Gcd'1(new_primMinusNatS0, Zero)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'11(vuv23, vuv24) → new_gcd0Gcd'1(new_primMinusNatS1(vuv23, vuv24), vuv24)
new_gcd0Gcd'0(Pos(Succ(Zero)), Zero) → new_gcd0Gcd'1(new_primMinusNatS0, Zero)
new_gcd0Gcd'17(Succ(Zero), Zero, vuv63) → new_gcd0Gcd'17(new_primMinusNatS2(Zero, Zero), Zero, new_primMinusNatS2(Zero, Zero))
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Zero), Succ(vuv620), vuv63) → new_gcd0Gcd'12(Zero, Neg(Succ(Succ(vuv620))))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'12(vuv400, vuv5) → new_gcd0Gcd'0(vuv5, vuv400)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'0(Neg(Succ(Zero)), Zero) → new_gcd0Gcd'16(new_primMinusNatS0, Zero)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)
new_gcd0Gcd'0(Pos(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'16(Succ(Zero), Zero) → new_gcd0Gcd'16(new_primMinusNatS0, Zero)
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'11(vuv6000, Zero)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'1(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'0(Neg(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'14(vuv26, vuv27) → new_gcd0Gcd'16(new_primMinusNatS1(vuv26, vuv27), vuv27)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)

The TRS R consists of the following rules:

new_primMinusNatS1(vuv23, Zero) → Succ(vuv23)
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS1(vuv23, Succ(vuv240)) → new_primMinusNatS2(vuv23, vuv240)
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS0Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS0
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 5 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Zero) → new_gcd0Gcd'11(vuv6000, Zero)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'11(vuv23, vuv24) → new_gcd0Gcd'1(new_primMinusNatS1(vuv23, vuv24), vuv24)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Zero), Succ(vuv620), vuv63) → new_gcd0Gcd'12(Zero, Neg(Succ(Succ(vuv620))))
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'12(vuv400, vuv5) → new_gcd0Gcd'0(vuv5, vuv400)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)
new_gcd0Gcd'0(Pos(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'11(vuv6000, Zero)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'1(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'0(Neg(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'14(vuv26, vuv27) → new_gcd0Gcd'16(new_primMinusNatS1(vuv26, vuv27), vuv27)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)

The TRS R consists of the following rules:

new_primMinusNatS1(vuv23, Zero) → Succ(vuv23)
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS1(vuv23, Succ(vuv240)) → new_primMinusNatS2(vuv23, vuv240)
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS0Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS0
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Zero) → new_gcd0Gcd'11(vuv6000, Zero)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'11(vuv23, vuv24) → new_gcd0Gcd'1(new_primMinusNatS1(vuv23, vuv24), vuv24)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Zero), Succ(vuv620), vuv63) → new_gcd0Gcd'12(Zero, Neg(Succ(Succ(vuv620))))
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'12(vuv400, vuv5) → new_gcd0Gcd'0(vuv5, vuv400)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)
new_gcd0Gcd'0(Pos(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'11(vuv6000, Zero)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'1(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'0(Neg(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'14(vuv26, vuv27) → new_gcd0Gcd'16(new_primMinusNatS1(vuv26, vuv27), vuv27)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)

The TRS R consists of the following rules:

new_primMinusNatS1(vuv23, Zero) → Succ(vuv23)
new_primMinusNatS1(vuv23, Succ(vuv240)) → new_primMinusNatS2(vuv23, vuv240)
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS0
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
QDP
                                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Zero) → new_gcd0Gcd'11(vuv6000, Zero)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'11(vuv23, vuv24) → new_gcd0Gcd'1(new_primMinusNatS1(vuv23, vuv24), vuv24)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Zero), Succ(vuv620), vuv63) → new_gcd0Gcd'12(Zero, Neg(Succ(Succ(vuv620))))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'12(vuv400, vuv5) → new_gcd0Gcd'0(vuv5, vuv400)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)
new_gcd0Gcd'0(Pos(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'11(vuv6000, Zero)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'1(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'0(Neg(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'14(vuv26, vuv27) → new_gcd0Gcd'16(new_primMinusNatS1(vuv26, vuv27), vuv27)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)

The TRS R consists of the following rules:

new_primMinusNatS1(vuv23, Zero) → Succ(vuv23)
new_primMinusNatS1(vuv23, Succ(vuv240)) → new_primMinusNatS2(vuv23, vuv240)
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_gcd0Gcd'11(vuv23, vuv24) → new_gcd0Gcd'1(new_primMinusNatS1(vuv23, vuv24), vuv24) at position [0] we obtained the following new rules:

new_gcd0Gcd'11(x0, Zero) → new_gcd0Gcd'1(Succ(x0), Zero)
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS2(x0, x1), Succ(x1))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
QDP
                                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Zero) → new_gcd0Gcd'11(vuv6000, Zero)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Zero), Succ(vuv620), vuv63) → new_gcd0Gcd'12(Zero, Neg(Succ(Succ(vuv620))))
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'12(vuv400, vuv5) → new_gcd0Gcd'0(vuv5, vuv400)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'11(x0, Zero) → new_gcd0Gcd'1(Succ(x0), Zero)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)
new_gcd0Gcd'0(Pos(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'11(vuv6000, Zero)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'1(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'0(Neg(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'14(vuv26, vuv27) → new_gcd0Gcd'16(new_primMinusNatS1(vuv26, vuv27), vuv27)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)

The TRS R consists of the following rules:

new_primMinusNatS1(vuv23, Zero) → Succ(vuv23)
new_primMinusNatS1(vuv23, Succ(vuv240)) → new_primMinusNatS2(vuv23, vuv240)
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
QDP
                                                  ↳ UsableRulesProof
                                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'1(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'11(vuv6000, Zero)
new_gcd0Gcd'11(x0, Zero) → new_gcd0Gcd'1(Succ(x0), Zero)

The TRS R consists of the following rules:

new_primMinusNatS1(vuv23, Zero) → Succ(vuv23)
new_primMinusNatS1(vuv23, Succ(vuv240)) → new_primMinusNatS2(vuv23, vuv240)
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                  ↳ UsableRulesProof
QDP
                                                      ↳ QReductionProof
                                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'1(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'11(vuv6000, Zero)
new_gcd0Gcd'11(x0, Zero) → new_gcd0Gcd'1(Succ(x0), Zero)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                  ↳ UsableRulesProof
                                                    ↳ QDP
                                                      ↳ QReductionProof
QDP
                                                          ↳ RuleRemovalProof
                                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'1(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'11(vuv6000, Zero)
new_gcd0Gcd'11(x0, Zero) → new_gcd0Gcd'1(Succ(x0), Zero)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_gcd0Gcd'1(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'11(vuv6000, Zero)
new_gcd0Gcd'11(x0, Zero) → new_gcd0Gcd'1(Succ(x0), Zero)


Used ordering: POLO with Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 0   
POL(new_gcd0Gcd'1(x1, x2)) = x1 + x2   
POL(new_gcd0Gcd'11(x1, x2)) = 2 + 2·x1 + x2   



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                  ↳ UsableRulesProof
                                                    ↳ QDP
                                                      ↳ QReductionProof
                                                        ↳ QDP
                                                          ↳ RuleRemovalProof
QDP
                                                              ↳ PisEmptyProof
                                                ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
QDP
                                                  ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Zero), Succ(vuv620), vuv63) → new_gcd0Gcd'12(Zero, Neg(Succ(Succ(vuv620))))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'12(vuv400, vuv5) → new_gcd0Gcd'0(vuv5, vuv400)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)
new_gcd0Gcd'0(Pos(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'1(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'0(Neg(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'14(vuv26, vuv27) → new_gcd0Gcd'16(new_primMinusNatS1(vuv26, vuv27), vuv27)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)

The TRS R consists of the following rules:

new_primMinusNatS1(vuv23, Zero) → Succ(vuv23)
new_primMinusNatS1(vuv23, Succ(vuv240)) → new_primMinusNatS2(vuv23, vuv240)
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_gcd0Gcd'14(vuv26, vuv27) → new_gcd0Gcd'16(new_primMinusNatS1(vuv26, vuv27), vuv27) at position [0] we obtained the following new rules:

new_gcd0Gcd'14(x0, Succ(x1)) → new_gcd0Gcd'16(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'14(x0, Zero) → new_gcd0Gcd'16(Succ(x0), Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
QDP
                                                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'14(x0, Zero) → new_gcd0Gcd'16(Succ(x0), Zero)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Zero), Succ(vuv620), vuv63) → new_gcd0Gcd'12(Zero, Neg(Succ(Succ(vuv620))))
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'12(vuv400, vuv5) → new_gcd0Gcd'0(vuv5, vuv400)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)
new_gcd0Gcd'0(Pos(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'1(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'14(x0, Succ(x1)) → new_gcd0Gcd'16(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'0(Neg(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)

The TRS R consists of the following rules:

new_primMinusNatS1(vuv23, Zero) → Succ(vuv23)
new_primMinusNatS1(vuv23, Succ(vuv240)) → new_primMinusNatS2(vuv23, vuv240)
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
QDP
                                                            ↳ UsableRulesProof
                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'16(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'14(x0, Zero) → new_gcd0Gcd'16(Succ(x0), Zero)

The TRS R consists of the following rules:

new_primMinusNatS1(vuv23, Zero) → Succ(vuv23)
new_primMinusNatS1(vuv23, Succ(vuv240)) → new_primMinusNatS2(vuv23, vuv240)
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
QDP
                                                                ↳ QReductionProof
                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'16(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'14(vuv6000, Zero)
new_gcd0Gcd'14(x0, Zero) → new_gcd0Gcd'16(Succ(x0), Zero)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
QDP
                                                                    ↳ RuleRemovalProof
                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'14(x0, Zero) → new_gcd0Gcd'16(Succ(x0), Zero)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'14(vuv6000, Zero)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_gcd0Gcd'16(Succ(Succ(vuv6000)), Zero) → new_gcd0Gcd'14(vuv6000, Zero)


Used ordering: POLO with Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 1   
POL(new_gcd0Gcd'14(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(new_gcd0Gcd'16(x1, x2)) = 1 + 2·x1 + x2   



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ RuleRemovalProof
QDP
                                                                        ↳ DependencyGraphProof
                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'14(x0, Zero) → new_gcd0Gcd'16(Succ(x0), Zero)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
QDP
                                                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Zero), Succ(vuv620), vuv63) → new_gcd0Gcd'12(Zero, Neg(Succ(Succ(vuv620))))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'12(vuv400, vuv5) → new_gcd0Gcd'0(vuv5, vuv400)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)
new_gcd0Gcd'0(Pos(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'1(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'14(x0, Succ(x1)) → new_gcd0Gcd'16(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'0(Neg(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)

The TRS R consists of the following rules:

new_primMinusNatS1(vuv23, Zero) → Succ(vuv23)
new_primMinusNatS1(vuv23, Succ(vuv240)) → new_primMinusNatS2(vuv23, vuv240)
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
QDP
                                                                ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Zero), Succ(vuv620), vuv63) → new_gcd0Gcd'12(Zero, Neg(Succ(Succ(vuv620))))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'12(vuv400, vuv5) → new_gcd0Gcd'0(vuv5, vuv400)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)
new_gcd0Gcd'0(Pos(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'1(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'14(x0, Succ(x1)) → new_gcd0Gcd'16(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'0(Neg(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))
new_primMinusNatS1(x0, Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS1(x0, Succ(x1))
new_primMinusNatS1(x0, Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
QDP
                                                                    ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Zero), Succ(vuv620), vuv63) → new_gcd0Gcd'12(Zero, Neg(Succ(Succ(vuv620))))
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'12(vuv400, vuv5) → new_gcd0Gcd'0(vuv5, vuv400)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)
new_gcd0Gcd'0(Pos(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'1(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'14(x0, Succ(x1)) → new_gcd0Gcd'16(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'0(Neg(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_gcd0Gcd'12(vuv400, vuv5) → new_gcd0Gcd'0(vuv5, vuv400) we obtained the following new rules:

new_gcd0Gcd'12(Succ(z0), Pos(Succ(z1))) → new_gcd0Gcd'0(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'12(Zero, Neg(Succ(Succ(z0)))) → new_gcd0Gcd'0(Neg(Succ(Succ(z0))), Zero)
new_gcd0Gcd'12(Zero, Pos(Succ(Succ(z0)))) → new_gcd0Gcd'0(Pos(Succ(Succ(z0))), Zero)
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
QDP
                                                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Zero, Pos(Succ(Succ(z0)))) → new_gcd0Gcd'0(Pos(Succ(Succ(z0))), Zero)
new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Zero), Succ(vuv620), vuv63) → new_gcd0Gcd'12(Zero, Neg(Succ(Succ(vuv620))))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)
new_gcd0Gcd'12(Succ(z0), Pos(Succ(z1))) → new_gcd0Gcd'0(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'0(Pos(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'12(Zero, Neg(Succ(Succ(z0)))) → new_gcd0Gcd'0(Neg(Succ(Succ(z0))), Zero)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'1(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'12(Zero, Pos(Succ(Succ(vuv4000))))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'14(x0, Succ(x1)) → new_gcd0Gcd'16(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'0(Neg(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 5 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
QDP
                                                                              ↳ QDPOrderProof
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'12(Succ(z0), Pos(Succ(z1))) → new_gcd0Gcd'0(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'10(vuv35, vuv36, Zero, Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)
new_gcd0Gcd'1(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_gcd0Gcd'1(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
The remaining pairs can at least be oriented weakly.

new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'12(Succ(z0), Pos(Succ(z1))) → new_gcd0Gcd'0(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'10(vuv35, vuv36, Zero, Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( Succ(x1) ) =
/0\
\1/
+
/11\
\00/
·x1

M( new_primMinusNatS2(x1, x2) ) =
/0\
\1/
+
/10\
\00/
·x1+
/00\
\00/
·x2

M( Zero ) =
/0\
\0/

M( Pos(x1) ) =
/0\
\0/
+
/00\
\10/
·x1

Tuple symbols:
M( new_gcd0Gcd'0(x1, x2) ) = 0+
[0,1]
·x1+
[1,0]
·x2

M( new_gcd0Gcd'10(x1, ..., x4) ) = 0+
[1,1]
·x1+
[1,1]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'11(x1, x2) ) = 0+
[1,0]
·x1+
[1,1]
·x2

M( new_gcd0Gcd'1(x1, x2) ) = 0+
[1,0]
·x1+
[1,1]
·x2

M( new_gcd0Gcd'12(x1, x2) ) = 0+
[1,0]
·x1+
[0,1]
·x2


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)
new_primMinusNatS2(Zero, Zero) → Zero



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
QDP
                                                                                  ↳ DependencyGraphProof
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'12(Succ(z0), Pos(Succ(z1))) → new_gcd0Gcd'0(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'10(vuv35, vuv36, Zero, Zero) → new_gcd0Gcd'11(vuv35, vuv36)
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
QDP
                                                                                      ↳ UsableRulesProof
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'12(Succ(z0), Pos(Succ(z1))) → new_gcd0Gcd'0(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ UsableRulesProof
QDP
                                                                                          ↳ QReductionProof
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'12(Succ(z0), Pos(Succ(z1))) → new_gcd0Gcd'0(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ UsableRulesProof
                                                                                        ↳ QDP
                                                                                          ↳ QReductionProof
QDP
                                                                                              ↳ NonInfProof
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'12(Succ(z0), Pos(Succ(z1))) → new_gcd0Gcd'0(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus [18] with the following steps:
Note that final constraints are written in bold face.


For Pair new_gcd0Gcd'12(Succ(z0), Pos(Succ(z1))) → new_gcd0Gcd'0(Pos(Succ(z1)), Succ(z0)) the following chains were created:




For Pair new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36))) the following chains were created:




For Pair new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000) the following chains were created:




For Pair new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [18]:

POL(Pos(x1)) = 0   
POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(c) = -1   
POL(new_gcd0Gcd'0(x1, x2)) = 1 - x1 + x2   
POL(new_gcd0Gcd'10(x1, x2, x3, x4)) = 1 + x1 - x3 + x4   
POL(new_gcd0Gcd'12(x1, x2)) = 1 + x1 - x2   

The following pairs are in P>:

new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
The following pairs are in Pbound:

new_gcd0Gcd'12(Succ(z0), Pos(Succ(z1))) → new_gcd0Gcd'0(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'0(Pos(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'10(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
There are no usable rules

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ UsableRulesProof
                                                                                        ↳ QDP
                                                                                          ↳ QReductionProof
                                                                                            ↳ QDP
                                                                                              ↳ NonInfProof
QDP
                                                                                                  ↳ DependencyGraphProof
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'12(Succ(z0), Pos(Succ(z1))) → new_gcd0Gcd'0(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'10(vuv35, vuv36, Zero, Succ(vuv380)) → new_gcd0Gcd'12(Succ(vuv35), Pos(Succ(vuv36)))
new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ UsableRulesProof
                                                                                        ↳ QDP
                                                                                          ↳ QReductionProof
                                                                                            ↳ QDP
                                                                                              ↳ NonInfProof
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
QDP
                                                                                                      ↳ QDPSizeChangeProof
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'10(vuv35, vuv36, Succ(vuv370), Succ(vuv380)) → new_gcd0Gcd'10(vuv35, vuv36, vuv370, vuv380)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
QDP
                                                                              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'14(x0, Succ(x1)) → new_gcd0Gcd'16(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'0(Neg(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_gcd0Gcd'0(Neg(Succ(Zero)), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
The remaining pairs can at least be oriented weakly.

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'14(x0, Succ(x1)) → new_gcd0Gcd'16(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( Neg(x1) ) =
/0\
\0/
+
/00\
\01/
·x1

M( Succ(x1) ) =
/0\
\0/
+
/00\
\10/
·x1

M( new_primMinusNatS2(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( Zero ) =
/1\
\0/

Tuple symbols:
M( new_gcd0Gcd'0(x1, x2) ) = 0+
[0,1]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'16(x1, x2) ) = 0+
[0,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'18(x1, ..., x4) ) = 0+
[0,0]
·x1+
[1,0]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'13(x1, ..., x4) ) = 0+
[0,0]
·x1+
[0,0]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'12(x1, x2) ) = 0+
[0,0]
·x1+
[0,1]
·x2

M( new_gcd0Gcd'15(x1, x2) ) = 0+
[0,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'19(x1, x2) ) = 0+
[0,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'14(x1, x2) ) = 0+
[0,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'17(x1, ..., x3) ) = 0+
[0,0]
·x1+
[0,0]
·x2+
[0,0]
·x3


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented: none



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
QDP
                                                                                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'14(x0, Succ(x1)) → new_gcd0Gcd'16(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_gcd0Gcd'16(Succ(Zero), Succ(vuv4000)) → new_gcd0Gcd'15(Zero, Succ(vuv4000))
The remaining pairs can at least be oriented weakly.

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'14(x0, Succ(x1)) → new_gcd0Gcd'16(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( Neg(x1) ) =
/0\
\0/
+
/10\
\00/
·x1

M( Succ(x1) ) =
/0\
\0/
+
/11\
\00/
·x1

M( new_primMinusNatS2(x1, x2) ) =
/0\
\1/
+
/10\
\00/
·x1+
/00\
\00/
·x2

M( Zero ) =
/1\
\1/

Tuple symbols:
M( new_gcd0Gcd'0(x1, x2) ) = 0+
[1,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'16(x1, x2) ) = 0+
[1,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'18(x1, ..., x4) ) = 0+
[0,0]
·x1+
[1,1]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'13(x1, ..., x4) ) = 0+
[1,1]
·x1+
[0,0]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'12(x1, x2) ) = 0+
[0,0]
·x1+
[1,0]
·x2

M( new_gcd0Gcd'15(x1, x2) ) = 0+
[1,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'19(x1, x2) ) = 0+
[0,0]
·x1+
[1,0]
·x2

M( new_gcd0Gcd'14(x1, x2) ) = 0+
[1,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'17(x1, ..., x3) ) = 0+
[0,0]
·x1+
[1,0]
·x2+
[0,0]
·x3


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)
new_primMinusNatS2(Zero, Zero) → Zero



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
QDP
                                                                                      ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'14(x0, Succ(x1)) → new_gcd0Gcd'16(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_gcd0Gcd'17(Succ(Succ(vuv6400)), Zero, vuv63) → new_gcd0Gcd'19(vuv6400, Zero)
The remaining pairs can at least be oriented weakly.

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'14(x0, Succ(x1)) → new_gcd0Gcd'16(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( Neg(x1) ) =
/0\
\0/
+
/10\
\00/
·x1

M( Succ(x1) ) =
/0\
\1/
+
/11\
\00/
·x1

M( new_primMinusNatS2(x1, x2) ) =
/0\
\0/
+
/10\
\00/
·x1+
/00\
\10/
·x2

M( Zero ) =
/1\
\0/

Tuple symbols:
M( new_gcd0Gcd'0(x1, x2) ) = 0+
[1,0]
·x1+
[1,0]
·x2

M( new_gcd0Gcd'16(x1, x2) ) = 0+
[1,0]
·x1+
[1,0]
·x2

M( new_gcd0Gcd'18(x1, ..., x4) ) = 0+
[1,1]
·x1+
[1,1]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'13(x1, ..., x4) ) = 0+
[1,1]
·x1+
[1,1]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'12(x1, x2) ) = 0+
[1,0]
·x1+
[1,0]
·x2

M( new_gcd0Gcd'15(x1, x2) ) = 0+
[1,0]
·x1+
[1,1]
·x2

M( new_gcd0Gcd'19(x1, x2) ) = 0+
[1,1]
·x1+
[1,0]
·x2

M( new_gcd0Gcd'14(x1, x2) ) = 0+
[1,0]
·x1+
[1,0]
·x2

M( new_gcd0Gcd'17(x1, ..., x3) ) = 0+
[1,0]
·x1+
[1,0]
·x2+
[0,0]
·x3


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)
new_primMinusNatS2(Zero, Zero) → Zero



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
                                                                                    ↳ QDP
                                                                                      ↳ QDPOrderProof
QDP
                                                                                          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'14(x0, Succ(x1)) → new_gcd0Gcd'16(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_gcd0Gcd'13(vuv40, vuv41, Zero, Zero) → new_gcd0Gcd'14(vuv40, vuv41)
new_gcd0Gcd'14(x0, Succ(x1)) → new_gcd0Gcd'16(new_primMinusNatS2(x0, x1), Succ(x1))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Zero) → new_gcd0Gcd'14(vuv40, vuv41)
The remaining pairs can at least be oriented weakly.

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( Neg(x1) ) =
/1\
\0/
+
/10\
\10/
·x1

M( Succ(x1) ) =
/0\
\1/
+
/01\
\01/
·x1

M( new_primMinusNatS2(x1, x2) ) =
/0\
\0/
+
/01\
\01/
·x1+
/00\
\00/
·x2

M( Zero ) =
/0\
\0/

Tuple symbols:
M( new_gcd0Gcd'0(x1, x2) ) = 1+
[0,1]
·x1+
[1,0]
·x2

M( new_gcd0Gcd'16(x1, x2) ) = 0+
[0,1]
·x1+
[1,0]
·x2

M( new_gcd0Gcd'18(x1, ..., x4) ) = 1+
[0,1]
·x1+
[0,1]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'13(x1, ..., x4) ) = 1+
[0,1]
·x1+
[0,1]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'12(x1, x2) ) = 0+
[1,0]
·x1+
[1,0]
·x2

M( new_gcd0Gcd'15(x1, x2) ) = 0+
[0,1]
·x1+
[0,1]
·x2

M( new_gcd0Gcd'19(x1, x2) ) = 1+
[0,1]
·x1+
[0,1]
·x2

M( new_gcd0Gcd'14(x1, x2) ) = 0+
[0,1]
·x1+
[0,1]
·x2

M( new_gcd0Gcd'17(x1, ..., x3) ) = 0+
[1,0]
·x1+
[0,1]
·x2+
[0,0]
·x3


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)
new_primMinusNatS2(Zero, Zero) → Zero



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
                                                                                    ↳ QDP
                                                                                      ↳ QDPOrderProof
                                                                                        ↳ QDP
                                                                                          ↳ QDPOrderProof
QDP
                                                                                              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'16(Succ(Succ(vuv6000)), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
                                                                                    ↳ QDP
                                                                                      ↳ QDPOrderProof
                                                                                        ↳ QDP
                                                                                          ↳ QDPOrderProof
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
QDP
                                                                                                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Zero) → new_gcd0Gcd'19(vuv78, vuv79)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Zero) → new_gcd0Gcd'19(vuv78, vuv79)
The remaining pairs can at least be oriented weakly.

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( Neg(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( Succ(x1) ) =
/0\
\1/
+
/11\
\00/
·x1

M( new_primMinusNatS2(x1, x2) ) =
/0\
\1/
+
/10\
\00/
·x1+
/00\
\00/
·x2

M( Zero ) =
/0\
\0/

Tuple symbols:
M( new_gcd0Gcd'0(x1, x2) ) = 1+
[0,0]
·x1+
[1,0]
·x2

M( new_gcd0Gcd'18(x1, ..., x4) ) = 1+
[1,1]
·x1+
[0,0]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'13(x1, ..., x4) ) = 0+
[0,0]
·x1+
[1,1]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'12(x1, x2) ) = 1+
[1,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'15(x1, x2) ) = 0+
[0,0]
·x1+
[1,1]
·x2

M( new_gcd0Gcd'19(x1, x2) ) = 0+
[1,1]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'17(x1, ..., x3) ) = 0+
[1,0]
·x1+
[0,0]
·x2+
[0,0]
·x3


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)
new_primMinusNatS2(Zero, Zero) → Zero



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
                                                                                    ↳ QDP
                                                                                      ↳ QDPOrderProof
                                                                                        ↳ QDP
                                                                                          ↳ QDPOrderProof
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
                                                                                                ↳ QDP
                                                                                                  ↳ QDPOrderProof
QDP
                                                                                                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'19(vuv72, vuv73) → new_gcd0Gcd'17(new_primMinusNatS2(Succ(vuv72), vuv73), vuv73, new_primMinusNatS2(Succ(vuv72), vuv73))
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
                                                                                    ↳ QDP
                                                                                      ↳ QDPOrderProof
                                                                                        ↳ QDP
                                                                                          ↳ QDPOrderProof
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
                                                                                                ↳ QDP
                                                                                                  ↳ QDPOrderProof
                                                                                                    ↳ QDP
                                                                                                      ↳ DependencyGraphProof
QDP
                                                                                                          ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(vuv230), Succ(vuv2400)) → new_primMinusNatS2(vuv230, vuv2400)
new_primMinusNatS2(Zero, Succ(vuv2400)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(vuv230), Zero) → Succ(vuv230)

The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
                                                                                    ↳ QDP
                                                                                      ↳ QDPOrderProof
                                                                                        ↳ QDP
                                                                                          ↳ QDPOrderProof
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
                                                                                                ↳ QDP
                                                                                                  ↳ QDPOrderProof
                                                                                                    ↳ QDP
                                                                                                      ↳ DependencyGraphProof
                                                                                                        ↳ QDP
                                                                                                          ↳ UsableRulesProof
QDP
                                                                                                              ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Succ(x0))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
                                                                                    ↳ QDP
                                                                                      ↳ QDPOrderProof
                                                                                        ↳ QDP
                                                                                          ↳ QDPOrderProof
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
                                                                                                ↳ QDP
                                                                                                  ↳ QDPOrderProof
                                                                                                    ↳ QDP
                                                                                                      ↳ DependencyGraphProof
                                                                                                        ↳ QDP
                                                                                                          ↳ UsableRulesProof
                                                                                                            ↳ QDP
                                                                                                              ↳ QReductionProof
QDP
                                                                                                                  ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_gcd0Gcd'17(Succ(Succ(vuv6400)), Succ(vuv620), vuv63) → new_gcd0Gcd'18(vuv6400, Succ(vuv620), vuv6400, vuv620) we obtained the following new rules:

new_gcd0Gcd'17(Succ(Succ(x0)), Succ(x1), Succ(Succ(x0))) → new_gcd0Gcd'18(x0, Succ(x1), x0, x1)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
                                                                                    ↳ QDP
                                                                                      ↳ QDPOrderProof
                                                                                        ↳ QDP
                                                                                          ↳ QDPOrderProof
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
                                                                                                ↳ QDP
                                                                                                  ↳ QDPOrderProof
                                                                                                    ↳ QDP
                                                                                                      ↳ DependencyGraphProof
                                                                                                        ↳ QDP
                                                                                                          ↳ UsableRulesProof
                                                                                                            ↳ QDP
                                                                                                              ↳ QReductionProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Instantiation
QDP
                                                                                                                      ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'17(Succ(Succ(x0)), Succ(x1), Succ(Succ(x0))) → new_gcd0Gcd'18(x0, Succ(x1), x0, x1)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus [18] with the following steps:
Note that final constraints are written in bold face.


For Pair new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79))) the following chains were created:




For Pair new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000) the following chains were created:




For Pair new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41) the following chains were created:




For Pair new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30)) the following chains were created:




For Pair new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0)) the following chains were created:




For Pair new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430) the following chains were created:




For Pair new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810) the following chains were created:




For Pair new_gcd0Gcd'17(Succ(Succ(x0)), Succ(x1), Succ(Succ(x0))) → new_gcd0Gcd'18(x0, Succ(x1), x0, x1) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [18]:

POL(Neg(x1)) = 0   
POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(c) = -1   
POL(new_gcd0Gcd'0(x1, x2)) = -1 - x1   
POL(new_gcd0Gcd'12(x1, x2)) = -1 - x2   
POL(new_gcd0Gcd'13(x1, x2, x3, x4)) = x1 - x2 - x3 + x4   
POL(new_gcd0Gcd'15(x1, x2)) = -1 + x1 - x2   
POL(new_gcd0Gcd'17(x1, x2, x3)) = -x1 + x2   
POL(new_gcd0Gcd'18(x1, x2, x3, x4)) = -1 - x3 + x4   

The following pairs are in P>:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
The following pairs are in Pbound:

new_gcd0Gcd'18(vuv78, vuv79, Zero, Succ(vuv810)) → new_gcd0Gcd'12(Succ(vuv78), Neg(Succ(vuv79)))
new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
There are no usable rules

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
                                                                                    ↳ QDP
                                                                                      ↳ QDPOrderProof
                                                                                        ↳ QDP
                                                                                          ↳ QDPOrderProof
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
                                                                                                ↳ QDP
                                                                                                  ↳ QDPOrderProof
                                                                                                    ↳ QDP
                                                                                                      ↳ DependencyGraphProof
                                                                                                        ↳ QDP
                                                                                                          ↳ UsableRulesProof
                                                                                                            ↳ QDP
                                                                                                              ↳ QReductionProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Instantiation
                                                                                                                    ↳ QDP
                                                                                                                      ↳ NonInfProof
                                                                                                                        ↳ AND
QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'0(Neg(Succ(Succ(vuv6000))), Succ(vuv4000)) → new_gcd0Gcd'13(vuv6000, Succ(vuv4000), vuv6000, vuv4000)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'17(Succ(Succ(x0)), Succ(x1), Succ(Succ(x0))) → new_gcd0Gcd'18(x0, Succ(x1), x0, x1)
new_gcd0Gcd'12(Succ(z0), Neg(Succ(z1))) → new_gcd0Gcd'0(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 4 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
                                                                                    ↳ QDP
                                                                                      ↳ QDPOrderProof
                                                                                        ↳ QDP
                                                                                          ↳ QDPOrderProof
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
                                                                                                ↳ QDP
                                                                                                  ↳ QDPOrderProof
                                                                                                    ↳ QDP
                                                                                                      ↳ DependencyGraphProof
                                                                                                        ↳ QDP
                                                                                                          ↳ UsableRulesProof
                                                                                                            ↳ QDP
                                                                                                              ↳ QReductionProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Instantiation
                                                                                                                    ↳ QDP
                                                                                                                      ↳ NonInfProof
                                                                                                                        ↳ AND
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ AND
QDP
                                                                                                                                  ↳ QDPSizeChangeProof
                                                                                                                                ↳ QDP
                                                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
                                                                                    ↳ QDP
                                                                                      ↳ QDPOrderProof
                                                                                        ↳ QDP
                                                                                          ↳ QDPOrderProof
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
                                                                                                ↳ QDP
                                                                                                  ↳ QDPOrderProof
                                                                                                    ↳ QDP
                                                                                                      ↳ DependencyGraphProof
                                                                                                        ↳ QDP
                                                                                                          ↳ UsableRulesProof
                                                                                                            ↳ QDP
                                                                                                              ↳ QReductionProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Instantiation
                                                                                                                    ↳ QDP
                                                                                                                      ↳ NonInfProof
                                                                                                                        ↳ AND
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ AND
                                                                                                                                ↳ QDP
QDP
                                                                                                                                  ↳ QDPSizeChangeProof
                                                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
                                                                                    ↳ QDP
                                                                                      ↳ QDPOrderProof
                                                                                        ↳ QDP
                                                                                          ↳ QDPOrderProof
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
                                                                                                ↳ QDP
                                                                                                  ↳ QDPOrderProof
                                                                                                    ↳ QDP
                                                                                                      ↳ DependencyGraphProof
                                                                                                        ↳ QDP
                                                                                                          ↳ UsableRulesProof
                                                                                                            ↳ QDP
                                                                                                              ↳ QReductionProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Instantiation
                                                                                                                    ↳ QDP
                                                                                                                      ↳ NonInfProof
                                                                                                                        ↳ AND
                                                                                                                          ↳ QDP
QDP
                                                                                                                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'13(vuv40, vuv41, Zero, Succ(vuv430)) → new_gcd0Gcd'15(Succ(vuv40), vuv41)
new_gcd0Gcd'15(vuv29, vuv30) → new_gcd0Gcd'17(Succ(vuv30), vuv29, Succ(vuv30))
new_gcd0Gcd'17(Succ(Succ(x0)), Succ(x1), Succ(Succ(x0))) → new_gcd0Gcd'18(x0, Succ(x1), x0, x1)
new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)
new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 3 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
                                                                                    ↳ QDP
                                                                                      ↳ QDPOrderProof
                                                                                        ↳ QDP
                                                                                          ↳ QDPOrderProof
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
                                                                                                ↳ QDP
                                                                                                  ↳ QDPOrderProof
                                                                                                    ↳ QDP
                                                                                                      ↳ DependencyGraphProof
                                                                                                        ↳ QDP
                                                                                                          ↳ UsableRulesProof
                                                                                                            ↳ QDP
                                                                                                              ↳ QReductionProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Instantiation
                                                                                                                    ↳ QDP
                                                                                                                      ↳ NonInfProof
                                                                                                                        ↳ AND
                                                                                                                          ↳ QDP
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ AND
QDP
                                                                                                                                  ↳ QDPSizeChangeProof
                                                                                                                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(vuv78, vuv79, Succ(vuv800), Succ(vuv810)) → new_gcd0Gcd'18(vuv78, vuv79, vuv800, vuv810)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ AND
                                                ↳ QDP
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ AND
                                                          ↳ QDP
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
                                                                                    ↳ QDP
                                                                                      ↳ QDPOrderProof
                                                                                        ↳ QDP
                                                                                          ↳ QDPOrderProof
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
                                                                                                ↳ QDP
                                                                                                  ↳ QDPOrderProof
                                                                                                    ↳ QDP
                                                                                                      ↳ DependencyGraphProof
                                                                                                        ↳ QDP
                                                                                                          ↳ UsableRulesProof
                                                                                                            ↳ QDP
                                                                                                              ↳ QReductionProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ Instantiation
                                                                                                                    ↳ QDP
                                                                                                                      ↳ NonInfProof
                                                                                                                        ↳ AND
                                                                                                                          ↳ QDP
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ AND
                                                                                                                                ↳ QDP
QDP
                                                                                                                                  ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'13(vuv40, vuv41, Succ(vuv420), Succ(vuv430)) → new_gcd0Gcd'13(vuv40, vuv41, vuv420, vuv430)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: